petab.v1.problem
PEtab Problem class
Classes
|
PEtab parameter estimation problem as defined by |
- class petab.v1.problem.Problem(sbml_model: libsbml.Model = None, sbml_reader: libsbml.SBMLReader = None, sbml_document: libsbml.SBMLDocument = None, model: Model = None, model_id: str = None, condition_df: pd.DataFrame = None, measurement_df: pd.DataFrame = None, parameter_df: pd.DataFrame = None, visualization_df: pd.DataFrame = None, observable_df: pd.DataFrame = None, mapping_df: pd.DataFrame = None, extensions_config: dict = None)[source]
Bases:
object
PEtab parameter estimation problem as defined by
model
condition table
measurement table
parameter table
observables table
mapping table
Optionally it may contain visualization tables.
- Parameters:
condition_df – PEtab condition table
measurement_df – PEtab measurement table
parameter_df – PEtab parameter table
observable_df – PEtab observable table
visualization_df – PEtab visualization table
mapping_df – PEtab mapping table
model – The underlying model
sbml_reader – Stored to keep object alive (deprecated).
sbml_document – Stored to keep object alive (deprecated).
sbml_model – PEtab SBML model (deprecated)
extensions_config – Information on the extensions used
- static from_combine(filename: Path | str) Problem [source]
Read PEtab COMBINE archive (http://co.mbine.org/documents/archive).
See also
petab.create_combine_archive()
.- Parameters:
filename – Path to the PEtab-COMBINE archive
- Returns:
A
petab.Problem
instance.
- static from_files(sbml_file: str | Path | None = None, condition_file: str | Path | Iterable[str | Path] | None = None, measurement_file: str | Path | Iterable[str | Path] | None = None, parameter_file: str | Path | Iterable[str | Path] | None = None, visualization_files: str | Path | Iterable[str | Path] | None = None, observable_files: str | Path | Iterable[str | Path] | None = None, model_id: str | None = None, extensions_config: dict | None = None) Problem [source]
Factory method to load model and tables from files.
- Parameters:
sbml_file – PEtab SBML model
condition_file – PEtab condition table
measurement_file – PEtab measurement table
parameter_file – PEtab parameter table
visualization_files – PEtab visualization tables
observable_files – PEtab observables tables
model_id – PEtab ID of the model
extensions_config – Information on the extensions used
- static from_yaml(yaml_config: dict | Path | str) Problem [source]
Factory method to load model and tables as specified by YAML file.
- Parameters:
yaml_config – PEtab configuration as dictionary or YAML file name
- get_lb(free: bool = True, fixed: bool = True, scaled: bool = False)[source]
Generic function to get lower parameter bounds.
- Parameters:
free – Whether to return free parameters, i.e. parameters to estimate.
fixed – Whether to return fixed parameters, i.e. parameters not to estimate.
scaled – Whether to scale the values according to the parameter scale, or return them on linear scale.
- Return type:
The lower parameter bounds.
- get_optimization_parameter_scales() dict[str, str] [source]
Return list of optimization parameter scaling strings.
See
petab.parameters.get_optimization_parameters()
.
- get_optimization_parameters() list[str] [source]
Return list of optimization parameter IDs.
See
petab.parameters.get_optimization_parameters()
.
- get_optimization_to_simulation_parameter_mapping(**kwargs)[source]
See
petab.parameter_mapping.get_optimization_to_simulation_parameter_mapping()
, to which all keyword arguments are forwarded.
- get_ub(free: bool = True, fixed: bool = True, scaled: bool = False)[source]
Generic function to get upper parameter bounds.
- Parameters:
free – Whether to return free parameters, i.e. parameters to estimate.
fixed – Whether to return fixed parameters, i.e. parameters not to estimate.
scaled – Whether to scale the values according to the parameter scale, or return them on linear scale.
- Return type:
The upper parameter bounds.
- get_x_ids(free: bool = True, fixed: bool = True)[source]
Generic function to get parameter ids.
- Parameters:
free – Whether to return free parameters, i.e. parameters to estimate.
fixed – Whether to return fixed parameters, i.e. parameters not to estimate.
- Return type:
The parameter IDs.
- get_x_nominal(free: bool = True, fixed: bool = True, scaled: bool = False)[source]
Generic function to get parameter nominal values.
- Parameters:
free – Whether to return free parameters, i.e. parameters to estimate.
fixed – Whether to return fixed parameters, i.e. parameters not to estimate.
scaled – Whether to scale the values according to the parameter scale, or return them on linear scale.
- Return type:
The parameter nominal values.
- sample_parameter_startpoints(n_starts: int = 100, **kwargs)[source]
Create 2D array with starting points for optimization
See
petab.sample_parameter_startpoints()
.
- sample_parameter_startpoints_dict(n_starts: int = 100) list[dict[str, float]] [source]
Create dictionaries with starting points for optimization
See also
petab.sample_parameter_startpoints()
.- Returns:
A list of dictionaries with parameter IDs mapping to samples parameter values.
- scale_parameters(x_dict: dict[str, float]) dict[str, float] [source]
Scale parameter values.
- Parameters:
x_dict – Keys are parameter IDs in the PEtab problem, values are unscaled parameter values.
- Return type:
The scaled parameter values.
- to_files(sbml_file: None | str | Path = None, condition_file: None | str | Path = None, measurement_file: None | str | Path = None, parameter_file: None | str | Path = None, visualization_file: None | str | Path = None, observable_file: None | str | Path = None, yaml_file: None | str | Path = None, prefix_path: None | str | Path = None, relative_paths: bool = True, model_file: None | str | Path = None, mapping_file: None | str | Path = None) None [source]
Write PEtab tables to files for this problem
Writes PEtab files for those entities for which a destination was passed.
NOTE: If this instance was created from multiple measurement or visualization tables, they will be merged and written to a single file.
- Parameters:
sbml_file – SBML model destination (deprecated)
model_file – Model destination
condition_file – Condition table destination
measurement_file – Measurement table destination
parameter_file – Parameter table destination
visualization_file – Visualization table destination
observable_file – Observables table destination
mapping_file – Mapping table destination
yaml_file – YAML file destination
prefix_path – Specify a prefix to all paths, to avoid specifying the prefix for all paths individually. NB: the prefix is added to paths before
relative_paths
is handled.relative_paths – whether all paths in the YAML file should be relative to the location of the YAML file. If
False
, then paths are left unchanged.
- Raises:
ValueError – If a destination was provided for a non-existing entity.
- to_files_generic(prefix_path: str | Path) str [source]
Save a PEtab problem to generic file names.
The PEtab problem YAML file is always created. PEtab data files are only created if the PEtab problem contains corresponding data (e.g. a PEtab visualization TSV file is only created if the PEtab problem has one).
- Parameters:
prefix_path – Specify a prefix to all paths, to avoid specifying the prefix for all paths individually. NB: the prefix is added to paths before
relative_paths
is handled downstream inpetab.yaml.create_problem_yaml()
.- Returns:
The path to the PEtab problem YAML file.
- unscale_parameters(x_dict: dict[str, float]) dict[str, float] [source]
Unscale parameter values.
- Parameters:
x_dict – Keys are parameter IDs in the PEtab problem, values are scaled parameter values.
- Return type:
The unscaled parameter values.
- property x_nominal_fixed_scaled: list
Parameter table nominal values with applied parameter scaling, for fixed parameters.