petab.v2.problem
PEtab v2 problems.
Classes
|
PEtab parameter estimation problem as defined by |
- class petab.v2.problem.Problem(model: Model | None = None, condition_df: DataFrame | None = None, measurement_df: DataFrame | None = None, parameter_df: DataFrame | None = None, visualization_df: DataFrame | None = None, observable_df: DataFrame | None = None, mapping_df: DataFrame | None = None, extensions_config: dict | None = None)[source]
Bases:
object
PEtab parameter estimation problem as defined by
model
condition table
measurement table
parameter table
observables table
mapping table
Optionally it may contain visualization tables.
- Parameters:
condition_df – PEtab condition table
measurement_df – PEtab measurement table
parameter_df – PEtab parameter table
observable_df – PEtab observable table
visualization_df – PEtab visualization table
mapping_df – PEtab mapping table
model – The underlying model
extensions_config – Information on the extensions used
- static from_combine(filename: Path | str) Problem [source]
Read PEtab COMBINE archive (http://co.mbine.org/documents/archive).
See also
petab.create_combine_archive()
.- Parameters:
filename – Path to the PEtab-COMBINE archive
- Returns:
A
petab.Problem
instance.
- static from_yaml(yaml_config: dict | Path | str) Problem [source]
Factory method to load model and tables as specified by YAML file.
- Parameters:
yaml_config – PEtab configuration as dictionary or YAML file name
- get_lb(free: bool = True, fixed: bool = True, scaled: bool = False)[source]
Generic function to get lower parameter bounds.
- Parameters:
free – Whether to return free parameters, i.e. parameters to estimate.
fixed – Whether to return fixed parameters, i.e. parameters not to estimate.
scaled – Whether to scale the values according to the parameter scale, or return them on linear scale.
- Return type:
The lower parameter bounds.
- get_optimization_parameter_scales() dict[str, str] [source]
Return list of optimization parameter scaling strings.
See
petab.parameters.get_optimization_parameters()
.
- get_optimization_parameters() list[str] [source]
Return list of optimization parameter IDs.
See
petab.parameters.get_optimization_parameters()
.
- get_optimization_to_simulation_parameter_mapping(**kwargs)[source]
See
petab.parameter_mapping.get_optimization_to_simulation_parameter_mapping()
, to which all keyword arguments are forwarded.
- static get_problem(problem: str | Path | Problem) Problem [source]
Get a PEtab problem from a file or a problem object.
- Parameters:
problem – Path to a PEtab problem file or a PEtab problem object.
- Returns:
A PEtab problem object.
- get_simulation_conditions_from_measurement_df() DataFrame [source]
See
petab.get_simulation_conditions()
.
- get_ub(free: bool = True, fixed: bool = True, scaled: bool = False)[source]
Generic function to get upper parameter bounds.
- Parameters:
free – Whether to return free parameters, i.e. parameters to estimate.
fixed – Whether to return fixed parameters, i.e. parameters not to estimate.
scaled – Whether to scale the values according to the parameter scale, or return them on linear scale.
- Return type:
The upper parameter bounds.
- get_x_ids(free: bool = True, fixed: bool = True)[source]
Generic function to get parameter ids.
- Parameters:
free – Whether to return free parameters, i.e. parameters to estimate.
fixed – Whether to return fixed parameters, i.e. parameters not to estimate.
- Return type:
The parameter IDs.
- get_x_nominal(free: bool = True, fixed: bool = True, scaled: bool = False)[source]
Generic function to get parameter nominal values.
- Parameters:
free – Whether to return free parameters, i.e. parameters to estimate.
fixed – Whether to return fixed parameters, i.e. parameters not to estimate.
scaled – Whether to scale the values according to the parameter scale, or return them on linear scale.
- Return type:
The parameter nominal values.
- sample_parameter_startpoints(n_starts: int = 100, **kwargs)[source]
Create 2D array with starting points for optimization
See
petab.sample_parameter_startpoints()
.
- sample_parameter_startpoints_dict(n_starts: int = 100) list[dict[str, float]] [source]
Create dictionaries with starting points for optimization
See also
petab.sample_parameter_startpoints()
.- Returns:
A list of dictionaries with parameter IDs mapping to samples parameter values.
- scale_parameters(x_dict: dict[str, float]) dict[str, float] [source]
Scale parameter values.
- Parameters:
x_dict – Keys are parameter IDs in the PEtab problem, values are unscaled parameter values.
- Return type:
The scaled parameter values.
- unscale_parameters(x_dict: dict[str, float]) dict[str, float] [source]
Unscale parameter values.
- Parameters:
x_dict – Keys are parameter IDs in the PEtab problem, values are scaled parameter values.
- Return type:
The unscaled parameter values.
- validate(validation_tasks: list[ValidationTask] = None) ValidationResultList [source]
Validate the PEtab problem.
- Parameters:
validation_tasks – List of validation tasks to run. If
None
or empty,Problem.validation_tasks
are used.- Returns:
A list of validation results.
- property x_nominal_fixed_scaled: list
Parameter table nominal values with applied parameter scaling, for fixed parameters.